博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
复杂网络上的动力学过程
阅读量:6819 次
发布时间:2019-06-26

本文共 765 字,大约阅读时间需要 2 分钟。

      图论与复杂网络的根本区别在于后者不仅研究网络的静态结构,而且还关注网络的动力学特性。接下来讨论五种动态过程:随机游走、惰性随机游走、自避行走、游客漫步和流行病传播。还有一些其他的动力学过程,如信息传播,规则网络和复杂网络上的渗流和振荡器(节点)同步。(参考书籍:基于复杂网络的机器学习方法)

1.随机游走

随机游走是一系列由连续随机步组成的轨迹的数学表示。图上的每个离散马尔科夫链可以被认为是随机游走。离散马尔科夫链是随机过程,其未来状态在条件上独立于过去的状态,因此只要知道当前状态即可。

从状态(节点)q到u的转移概率:q到u的边权重越大,就越有可能在两点之间产生转移。

转移矩阵完全表征了马尔科夫过程。

在随机游走过程中,采用传代时间函数来计算给定节点被访问的次数。

势能矩阵:表示当我们从任何给定的其他节点开始,每个节点被访问的预期次数。

这里仅存在两种状态:循环状态和过渡状态。此种情况下,如果j不是周期性的,那么它一定是短暂性的。

2.惰性随机游走:解决周期性问题

3.自避行走:网络上的节点仅被访问一次。

4.游客漫步:遵循一个确定性规则。

5.流行病传播

       流行病传播属于网络动力学过程,大家主要关心的是网络结构如何减弱或放大疾病传播。疫情的扩展可能与半监督学习中的数据标签传播直接相关。    

       流行病模型应用最广泛的是SIR和SIS模型。

       SIR模型,每个人都有三种状态:易感染,感染,恢复。SIR模型的动力学过程可以描述为:

    

        其中,x,y,z分别为全部群体中易感染者、感染者和免疫者所占的比例。

        SIS模型:与SIR模型的区别是,在SIS模型中,感染者在恢复之后可能会再次回到易感染状态。SIS模型的动力学过程定义为:

       

 

转载于:https://www.cnblogs.com/Ann21/p/10283551.html

你可能感兴趣的文章
使用Nodejs创建基本的网站 Microblog--《Node.js开发指南》 3
查看>>
网管工作是否值得做下去?
查看>>
神行者PD10-adb push逃脱ro权限
查看>>
JPA(四)之实体关系一对一
查看>>
如何使用羊驼自动生成缩略图的功能。
查看>>
定制化Azure站点Java运行环境(1)
查看>>
inotify用法简介及结合rsync实现主机间的文件实时同步
查看>>
php 判断手机登陆
查看>>
git 问题
查看>>
Fedora18设置终端快捷键 和 桌面快捷方式
查看>>
取消NavigationBar左右两边的空隙
查看>>
MEMCACHE常用的命令
查看>>
Android 不显示光标或者光标颜色为白色的解决方法
查看>>
C#网络编程之---TCP协议的同步通信(二)
查看>>
thinkphp-许愿墙-3
查看>>
linux awk时间计算脚本
查看>>
杭电3635--Dragon Balls(并查集)
查看>>
npm install报错Unhandled rejection RangeError: Maximum call stack size exceededill install
查看>>
理解OAuth 2.0
查看>>
得到颜色的整形值
查看>>